Math 618
(Last Updated May 25, 2022 @ 3pm)
(Last Updated May 25, 2022 @ 3pm)
Course Notes (These notes are from Spring 2019, and so they are not a perfect representation of what we will do in class . But they are good guide nonetheless.)
Gradescope (for homework submsission)
Contact: You can always reach me via email at nicholas.vlamis@qc.cuny.edu. I will generally respond within 24 hours.
Monday, May 16 is the last day of class. We will spend the time working on problems from Assignment 12.
Exam 2 is on Monday, May 23 from 4-6PM and will be in our normal class room, 320 Kiely Hall.
Exam 2 will not be cumulative; in particular, Exam 2 will cover the entirety of our notes on hyperbolic geometry.
Exam 2 will be approximately the same length as Exam 1 and will consist of the same format, but with one notable exception: Please bring a graphing calculator to the exam.
You may bring two standard-sized sheets of notes to the exam. You may write on the front and back of the sheets.
I will hold my normal (virtual) office hour this week on Thursday from 4-5pm.
Course Evaluations - Due by May 18 (Please fill them out!!)
Assignment 12 (not to be collected)
This video should be watched after class on Monday, May 9 and before class on Monday, May 16.
Classify conformal hyperbolic rigid motions.
These videos should be watched after class on Monday, May 2 and before class on Monday, May 9.
Prove that if two hyperbolic triangles are equiangular then they are congruent.
Prove that any triple of non-negative real numbers whose sum is less than pi can be realized as the angles of a hyperbolic triangle.
These videos should be watched after class on Monday, April 25 and before class on Monday, May 2.
Introduce tools for computing angles between hyperbolic geodesic, and use the to compute the angles in an example hyperbolic triangle.Review basic multivariable calculus and introduce the notion of hyperoblic area.These videos should be watched after class on Monday, April 11 and before class on Monday, April 25.
Discuss calculating distance in the hyperbolic plane and prove that every Euclidean circle in the upper half plane is a hyperbolic circle.Prove that every hyperbolic circle is a Euclidean circle.Exam 1 returned Wednesday, April 6
These videos should be watched after class on Monday, April 4 and before class on Monday, April 11.
Introduce the notion of hyperbolic rigid motion and give some examplesShow that the inversion of a circle centered at the origin is a hyperbolic rigid motion.Exam 1 is on Wednesday, March 30
Reminder: Exam 1 is on Wednesday, March 30
These videos should be watched after class on Monday, March 21 and before class on Monday, April 4.
Review how we identify the Euclidean plane with R^2 and the definition of arc length from calculus.These videos should be watched after class on Monday, March 14 and before class on Monday, March 21.
Prove that inversions negate angles between two lines, two circles, and a line and a circle.Prove a proposition about circles that we will use in class.These videos should be watched after class on Monday, March 7 and before class on Monday, March 14.
Introduce inversions in circles.Prove a theorem characterizing the images of lines and circles under inversions in circles.These videos should be watched after class on Monday, February 28 and before class on Monday, March 7.
Proved that the product of three reflections is either a reflection or glide reflection.No class Monday, February 21 (college closed in observation of Presidents' day)
These videos should be watched after class on Wednesday, February 23 and before class on Monday, February 28.
Proved that every translation is the composition of two reflections about parallel lines. Introduced rotations.These videos should be watched after class on Monday, February 14 and before class on Wednesday, February 23.
Video 5 (Notes) [This video is a recording of a live session with students, so there a few questions from students that I dress towards the end.]
These videos should be watched after class on Monday February 7 and before class on Monday, February 14.
Introduced the notion of rigid motions.We show that rigid motions preserve lines and are completely determined by their behavior on any one triangle.Assignment 0 — Due Friday, February 4
The Foundation's of Geometry by David Hilbert (Of historical interest, not required)
Notes from Monday's Class (To be finished on Wednesday).
These videos should be watched after class Wednesday, February 2 and before class on Monday, February 7.
Introduce the notion of congruence and two congruence theorems (side-angle-side and side-side-side).Introduce the notion of parallelism and establish the Euclidean theorems about parallel lines that hold for all absolute geometries.